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Abstract 
 
Ever since the invention of the Polymorphic Cipher, the highly variable concept has caused a noticeable 
amount of fear in the publically financed security sector which reacted hastily and violently through 
commentators who tried to shrug the concept off. The underlying idea of - at minimum - selecting a cipher 
from a set of conceptually different ciphers in a keyed operation, is although as simple as it is effective and a 
similar and undisputed concept has even been implemented in very popular encryption products since at 
least 20 years. 
So far the goal of PMC Ciphers was to create ultimate ciphers that could not be broken at all. For that 
reason, block sizes need to be excessively big and preferentially variable. So far a Polymorphic Cipher that 
is designed sufficiently close to keyed cipher selection and that utilizes widely used royalty-free cipher 
primitives like Anubis or the commonly known AES Rijndael encryption functions was missing. Version 1 of 
the Polymorphic Medley Cipher was insufficiently hardened against brute force attacks involving GPGPUs 
like the “Many Integrated Core (MIC)” architecture from Intel. 
In order to make a demonstration of a hardened cipher of ciphers available, the royalty-free 128 bit 
Polymorphic Medley Cipher Version 2 is from now on available for cryptanalysis and for use by everybody 
who wishes to implement the cipher in any product for civil use. 
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1. Introduction 
 
In 1999 I've invented a cipher that was compiled from the user-supplied key and I called the idea 
"Polymorphic Cipher" as the different ciphers always came with the same interface, but with different code to 
perform the task to encrypt data. If a polymorphic cipher cannot be compiled - which today is prevented by 
many microprocessor platforms though DEP (Data Execution Prevention) in order to prevent viruses from 
doing malicious things, it is still possible to use totally variable round functions or to simply select a cipher 
from a set of base ciphers and to cascade a number of encryption operations. The latter concept is widely 
known to be a real useful feature in data encryption software. 
As an example, a popular open-source Disk Encryption Software named TrueCrypt allows users to select 
the cipher from a set of three ciphers with a similar interface: 
- AES Rijndael 
- Serpent 
- Twofish 
 
It is further possible to select the following cascades: 
- AES-Twofish 
- AES-Twofish-Serpent 
- Serpent-AES 
- Serpent-Twofish-AES 
- Twofish-Serpent 
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The fact that the user selects the cipher or the cascade of ciphers makes the selection operation a so-called 
"keyed operation". Due to high amount of entropy in ciphertexts produced by commonly used encryption 
algorithms like Serpent, an attacker cannot distinguish ciphers by analyzing large amounts of ciphertext. An 
attacker thus needs to try each cipher if he doesn't know the keyphrase. 
Cascades of ciphers may consume a bit more CPU time, but an attacker can as well not distinguish between 
a single cipher or a cascade of ciphers. C.E. Shannon [1] provides the background for this. 
 
TrueCrypt although only allows to choose from eight different ciphers (ciphers and cascades) and only two 
combinations of triple encryption are provided. According to [3] and [4], single and double encryption feature 
almost the same attack security. 
 
Wouldn't it make sense to always cascade - let's say - eight ciphers from a set of (e.g.) eight ciphers like 
AES Rijndael, Serpent or Anubis? 
Of course it this would make sense, simply because the math looks challenging for attackers and 
cryptanalysts! 
Having to try 8 encryption functions is certainly a difficult task (TrueCrypt), but the need to make a guess 
between e.g. 40.320 for a cascade of 8 ciphers (every base cipher is guaranteed to be used once in the 
cascade) or even 16 million encryption functions (arbitrary selection of base ciphers) is a task that is more 
difficult by several orders of magnitude and even if half of the "cipher primitives" were considered as being 
"weak" or "broken", the cascade would still provide for a good safety margin. It is evident that the sequence 
in the cascade cannot be set in a dropdown menu any more. It makes much more sense to include this 
operation in the key setup function. Actually the cascade provides for at least 15 additional password bits 
(8!). 
 
The key setup function is actually the decisive weakness of ciphers like AES Rijndael as this function 
executes very fast (850 clock cycles for 128 bit keys on a Pentium Pro microprocessor [2]). Twofish needs 
ten times longer - from the standpoint of an attacker a disaster. 
 
What if key setup took hundreds of millions of clock cycles? 
For a smart card chip application, a cipher with such characteristics would be useless, but a billion 
instructions are crunched by CPUs of modern smartphones or desktop PCs within a second or less. 
The average user would probably feel a slight delay until a data connection was established, but an attacker 
would suddenly be deprived of the most common attack - the brute force attack using a dictionary. 
 
It is logical that the performance of a 128 bit cipher of ciphers is limited by the comparably small and fixed 
block size. Cascade block ciphers can although very well increase attack security over any of the 
implemented base ciphers (AES Rijndael, Twofish, Serpent, Cast-256, RC6, SEED, Camellia and Anubis) 
[3] and [4]. 
Attack security is finally what it's all about. This is especially true since GPU chips (Graphics Processing 
Units) and more recently general-purpose graphics processing units (GPGPU) are readily available on the 
market. One of the most recent new products is the “Intel® Xeon Phi™ Coprocessor 5110P” [9] with: 

• 60 cores/1.053 GHz/240 threads 
• Up to 1 teraflops double-precision performance 
• 8 GB memory and 320 GB/s bandwidth 
• Standard PCIe* x16 form factor 
• Linux* operating system, IP addressable 
• Supported by the latest Intel® software development products 
• 512-bit wide vector engine 
• 32 KB L1 I/D cache, 512 KB L2 cache (per core) 
• 8 GB GDDR5 memory (up to 320 GB/s) 
• 225W TDP 
• X16 PCIe form factor (requires IA host) 
• Host OS: Red Hat Enterprise Linux 6.x, SuSE Linux 12+ 

 
32KB Level 1 – and 512KB of Level 2 cache mean that cracking by brute force of AES or other tiny ciphers 
is performed by such a chip on all 60 processor cores in parallel with 0% cache miss rate! 
 
Even cascades of 8 tiny ciphers can be attacked by all 60 cores in parallel without the need to access the 
8GB DDR5 RAM at all. The high flexibility of GPGPUs makes parallelized attacks on almost all known 
ciphers possible and feasible. 
 
So far only the Polymorphic Giant Block Size Cipher [10] renders highly parallelized hardware useless as 
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the resources needed to mount parallelized attacks exceed the resources that can be integrated into a 
single silicon die. In order to be able to mount a parallel brute force attack the Polymorphic Giant Block Size 
Cipher [10] that is implemented in the product “File Encryption in One Block” from PMC Ciphers 
(http://www.pmc-ciphers.com/eng/content/TurboCrypt/File-Encryption.html), more than 4 billion transistors 
would be needed for the level 2 cache of each processor core as the S-Box of that cipher has such an 
extreme size. 
The proposed cipher accesses a large memory bias data array as frequently as possible in a way so that 
even big level 1 or level 2 cache memories do not contain the desired data and thus force GPGPU chips to 
fetch this data from memory that is external to the chip as well as to write it through sufficiently often in order 
to force the processor cores to wait. The concept is less efficient than the one implemented in the 
Polymorphic Giant Block Size Cipher [10], but Brute Force attack security is still by far better than for AES 
(or likewise) alone. 
 

2. The cipher 
 
Recent work [3] proves that "for the wide class of block ciphers with smaller key space than message space, 
a reasonable increase in the length of the cascade improves the encryption security". 
By using base ciphers with identical key space and message space, encryption security is likely to be very 
high. Use of a huge Internal State (16MB nominal) hardens the design against distributed attacks and 
against differential attacks. 
 
The cipher is a cascade block cipher with eight 128 bit base ciphers all operated in 128 bit key length mode. 
The minimum key length is 128 bit in 8-bit words (16 bytes). Maximum key length is 1024 bit. Block size is 
exactly 128 bit in 8-bit words (16 bit). All base ciphers feature an identical interface through the use of 
wrapper functions. As an example, here's the wrapper function for the Anubis encryption function: 
 
void CIPHER_PRIMITIVE_ENCRYPT_Anubis128(void  * pCC,uint8 * p128bit_Plaintext,uint8 * p128bit_Ciphertext) 
{ 
 struct crypto_primitives::NESSIEstruct_anubis * pAnubis_cc; 
 
 pAnubis_cc=(crypto_primitives::NESSIEstruct_anubis *)pCC; 
 crypto_primitives::NESSIEencrypt(pAnubis_cc,p128bit_Plaintext,p128bit_Ciphertext); 

} 

 
 
The interface of the Polymorphic Medley Cipher (Version 2) consists of a key setup function, a basic 
encryption function, a corresponding decryption function and a function that frees the random access 
memory that holds the Internal State of the cipher. An alternative ECB mode encryption function as well as 
an encryption function for CBC mode is provided as well. 
 
The key setup function 
 int PMCMED_keysetup(uint8 * pKey,void * pPMCMED_cc,uint32 key_length_in_bits,uint32 

 complexity) 

initializes the crypto context (pointer  pPMCMED_cc  to the struct supplied as the second parameter with the 
key (pointer  pKey  supplied as first parameter). The key length as well as a complexity parameter are as 
well provided. key length is the number of key bits (must be a multiple of 8). The complexity parameter is 
provided to allow key setup to be considerably fast, but also very slow. Values in the range of 0 .. 256 make 
the function execute fast and values up to 65535 slow the function down. In the latter case, a multitude of 
keyed operations involving all base ciphers and hash functions are called many times in order to compute 
the Internal State of the Polymorphic Medley Cipher. 
 
Three sets of encryption/decryption functions - two for data encryption in ECB (Electronic Code Book) mode 
and one data encryption in CBC (Cipher Block Chaining) mode exist: 
 
The encryption function 
 void PMCMED_encrypt_cascade(void * pPMCMED_cc,uint8 * pPlaintext,uint8 * pCiphertext)  
executes all base ciphers one after the other with different keys in an order that is set by the key setup 
function. The sequence of eight ciphers is set by the key setup function. Each base cipher is guaranteed to 
be used exactly one time in the cascade. The number of possible cipher combinations is exactly 40.320. 
The decryption function 
 void PMCMED_decrypt_cascade(void * pPMCMED_cc,uint8 * pCiphertext,uint8 * pPlaintext)  
executes the cascade in reverse order. 
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The encryption function 
 void PMCMED_encrypt_max_var_cascade(void * pPMCMED_cc,uint8 * pPlaintext,uint8 * 

pCiphertext)  
executes eight base ciphers that operate with different keys one after the other in an order that is set by the 
key setup function. It is very well possible (with a probability of exactly 1/16777216) that the very same base 
cipher (e.g. AES Rijndael) is executed eight times in a row with different keys, but there is nothing wrong 
about that. There exist exactly 2

24
 = 16777216 different and equally probable cipher combinations. 

The decryption function 
 void PMCMED_decrypt_max_var_cascade(void * pPMCMED_cc,uint8 * pCiphertext,uint8 * 

pPlaintext)  
executes the cascade in reverse order. 
 
Developers can either use the functions PMCMED_encrypt_cascade() / PMCMED_decrypt_cascade() OR 
PMCMED_encrypt_max_var_cascade() / PMCMED_decrypt_max_var_cascade(). The advantage of the first set 
of encryption/decryption functions is that all base ciphers are executed one after the other. The 
disadvantage is the limited number of combinations for the cascade. The second set of 
encryption/decryption functions is likely to be advantageous due to optimum attack security as 
approximately 24 bit of variability are present rather than only 14 bit. 
 
 
The encryption function 
 void PMCMED_CBC_encrypt_cascade(void * pPMCMED_cc,uint8 * pPlaintext,uint8 * 
pCiphertext) 

performs CBC encryption of any number of consecutive blocks of data. It executes eight base ciphers that 
operate with different keys one after the other in an order that is set by the key setup function and that is 
modified for each block through the use of a scheduler encryption function. There exist exactly 2

24
 = 

16777216 different and equally probable cipher combinations for each encrypted block. 
The decryption function 
 void PMCMED_CBC_decrypt_cascade(void * pPMCMED_cc,uint8 * pCiphertext,uint8 * 

pPlaintext) 

executes the base ciphers in reverse order. 
In order to be able to use the CBC encryption functions properly, CBC mode MUST be initialized once and 
at any point of time when synchronization to a stream of data is required - e.g. once per video frame, by 
calling the function 
 void PMCMED_init_CBC_mode(void * pPMCMED_cc,word64 CBC_block_counter_start_value=0LL) 

The unsigned 64 bit integer number CBC_block_counter_start_value can be initialized with any value that 
identifies a certain section of a data stream in order to further increase attack security. 
 
 
The function 
 int PMCMED_free_memory(void * pPMCMED_cc) 

must be called as soon as the cipher is not needed any more in an application software in order to 
deallocate the Internal State of the cipher. 
 
 
 
2.1 Key Setup 
 
During the key setup phase is the key expanded for all eight base ciphers multiple times. In addition to this, 
function pointers to the base ciphers and hash functions are initialized and permutated. 
 
The following data is derived from the user-provided key: 

- Sequence of function pointers to base hash functions 
- Sequence of function pointers to base cipher functions 
- 16 different Internal States for the base cipher functions 
- Initialization Vector for Cipher Block Chaining (CBC) mode 
- Selection of a base cipher that is used as scheduler and Initialization Vector for the scheduler 
- Array of unsigned 64 bit integers with 16MB size that is used by all encryption/decryption functions 

to translate the ciphertext after/before executing the 4
th
 base cipher in the cascade 
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The 16 different Internal States for the eight base ciphers requires approximately 154 kBytes of RAM + 
16Mbytes of memory bias, which forces an attacker to provide this costly hardware multiple times in order to 
be able to mount a distributed attack. 
 
The key setup function uses the compression functions SHA-256, Whirlpool, RIPEMD, Tiger and HAVAL-
256 to compute a pseudorandom sequence of these hash functions as well as a pseudorandom sequence 
of all eight base ciphers, then to compute hash results, to further swap function pointers to the base ciphers, 
to initialize the scheduler for CBC operations and finally to initialize a set of cipher contexts for the base 
ciphers - 16 for each base cipher. 
 
 
 
2.2 Encryption/Decryption in ECB mode with cascades consisting of the entire set of base ciphers 
 
For the encryption and decryption in ECB (Electronic Code Book) mode, one set of cipher contexts is 
selected at the end of the key setup function. The same function determines the sequence of ciphers that 
are later executed in a cascade by the EBC mode encryption and decryption functions 
PMCMED_encrypt_cascade() and PMCMED_decrypt_cascade(). Each base cipher is executed exactly once in 
the cascade at any position in the queue. Eight base ciphers are thus executed one after the other. The 
ciphertext of the first base cipher is the plaintext of the next base cipher in the queue and so on. 
 
This is the source code of the encryption function: 
 
void PMCMED_encrypt_cascade(void * pPMCMED_cc,uint8 * pPlaintext,uint8 * pCiphertext) 
{ 
 int i,j; 
 struct PMCMED_cipher_context * pPMCMED_cipher_ctx; 
 KISSDELEGATE * kiss_func=NULL; 
 gbpmc_kiss_context kiss_ctx; 
 word64 w64; 
 

 pPMCMED_cipher_ctx=(struct PMCMED_cipher_context *)pPMCMED_cc; 
 
 j=pPMCMED_cipher_ctx->ciphertext_scheduler[0] & (NUM_OF_CRYPTO_CONTEXTS_PER_CIPHER_DELEGATE-1); 
 for (i=0;i<NUM_OF_CIPHER_FUNCTION_DELEGATES;i++) 
 { 
  pPMCMED_cipher_ctx->encryption_func_delegates[i]((void *)&pPMCMED_cipher_ctx-> 

pcc[((i*NUM_OF_CRYPTO_CONTEXTS_PER_CIPHER_DELEGATE)+j)* 
MAX_SIZE_OF_CRYPTO_CONTEXT_IN_BYTES],pPlaintext,pCiphertext); 

  i++; 
  pPMCMED_cipher_ctx->encryption_func_delegates[i]((void *)&pPMCMED_cipher_ctx-> 

pcc[((i*NUM_OF_CRYPTO_CONTEXTS_PER_CIPHER_DELEGATE)+j)* 
MAX_SIZE_OF_CRYPTO_CONTEXT_IN_BYTES],pCiphertext,pPlaintext); 

  if (i==3) { 
   w64=((word64*)pPlaintext)[1]; 
   w64^=((word64*)pPMCMED_cipher_ctx->memory_bias)[w64 &  
    ((SIZE_OF_MEMORY_BIAS_ARRAY>>3)-1)]; 
   kiss_func=pPMCMED_cipher_ctx->gbpmc_kiss[w64 & (NUM_OF_KISSDELEGATES-1)]; 

   kiss_ctx=*(pPMCMED_cipher_ctx->initial_ctx_array[(w64>>30) & 
 (NUM_OF_KISS_CONTEXTS-1)]); 

   (*((word64*)pPlaintext))^=kiss_func(&kiss_ctx); 
  } 
 } 
 memcpy(pCiphertext,pPlaintext,16); 
 memset(pPlaintext,0xaa,16); 
} 

 
The function looks up the set of cipher contexts to use and subsequently encrypts the plaintext repeatedly 
with all available base ciphers. There exist n! cipher combinations (8 * 7 * 6 * 5 * 4 * 3 * 2 * 1 = 40.320). The 
advantage of executing all available base ciphers in an arbitrary sequence is that the entire set of base 
ciphers is definitely being used. There exist although only 40.320 possible combinations for cascades. 
 
The decryption function executes the ciphers in reverse order. 
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2.3 Encryption/Decryption in ECB mode with cascades consisting of an arbitrary combination of 
base ciphers 

 
For the encryption and decryption in ECB (Electronic Code Book) mode, one set of cipher contexts is 
selected at the end of the key setup function. The same function determines the sequence of ciphers that 
are later executed in a cascade by the EBC mode encryption and decryption functions 
PMCMED_encrypt_cascade() and PMCMED_decrypt_cascade(). Any base cipher can be selected for any 
position in the queue. Eight base ciphers are thus executed one after the other and the probability for a 
single base cipher being selected for all positions in the queue is 1/16777216 = 0.0000000596046. The 
ciphertext of the first base cipher is the plaintext of the next base cipher in the queue and so on. 
 
This is the source code of the encryption function: 
 
void PMCMED_encrypt_max_var_cascade(void * pPMCMED_cc,uint8 * pPlaintext,uint8 * pCiphertext) 
{ 
 int i,j; 
 struct PMCMED_cipher_context * pPMCMED_cipher_ctx; 
 int index_arr[NUM_OF_CIPHER_FUNCTION_DELEGATES]; 
 KISSDELEGATE * kiss_func=NULL; 
 gbpmc_kiss_context kiss_ctx; 
 word64 w64; 
 
 pPMCMED_cipher_ctx=(struct PMCMED_cipher_context *)pPMCMED_cc; 
 
 for (i=0;i<NUM_OF_CIPHER_FUNCTION_DELEGATES;i++) index_arr[i]=(pPMCMED_cipher_ctx-> 
  ciphertext_scheduler[i]>>4) & (NUM_OF_CIPHER_FUNCTION_DELEGATES-1); 

 
 j=pPMCMED_cipher_ctx->ciphertext_scheduler[pPMCMED_cipher_ctx->ciphertext_scheduler[0] & 0x0f] & 
  (NUM_OF_CRYPTO_CONTEXTS_PER_CIPHER_DELEGATE-1); 
 
 for (i=0;i<NUM_OF_CIPHER_FUNCTION_DELEGATES;i++) 
 { 
  pPMCMED_cipher_ctx->encryption_func_delegates[index_arr[i]]((void *)&pPMCMED_cipher_ctx-> 
   pcc[((index_arr[i]*NUM_OF_CRYPTO_CONTEXTS_PER_CIPHER_DELEGATE)+j)* 
   MAX_SIZE_OF_CRYPTO_CONTEXT_IN_BYTES],pPlaintext,pCiphertext); 
  i++; 
  pPMCMED_cipher_ctx->encryption_func_delegates[index_arr[i]]((void *)&pPMCMED_cipher_ctx-> 
   pcc[((index_arr[i]*NUM_OF_CRYPTO_CONTEXTS_PER_CIPHER_DELEGATE)+j)* 
   MAX_SIZE_OF_CRYPTO_CONTEXT_IN_BYTES],pCiphertext,pPlaintext); 
  if (i==3) { 
   w64=((word64*)pPlaintext)[1]; 
   w64^=((word64*)pPMCMED_cipher_ctx->memory_bias)[w64 &  

    ((SIZE_OF_MEMORY_BIAS_ARRAY>>3)-1)]; 
   kiss_func=pPMCMED_cipher_ctx->gbpmc_kiss[w64 & (NUM_OF_KISSDELEGATES-1)]; 
   kiss_ctx=*(pPMCMED_cipher_ctx->initial_ctx_array[(w64>>30) & 
    (NUM_OF_KISS_CONTEXTS-1)]); 
   (*((word64*)pPlaintext))^=kiss_func(&kiss_ctx); 
  } 
 } 
 memcpy(pCiphertext,pPlaintext,16); 
 memset(pPlaintext,0xaa,16); 
} 
 

The function looks up the set of cipher contexts that are to be used, initializes an array that contains indexes 
that point to certain base cipher functions and subsequently it encrypts the plaintext repeatedly with the 
previously selected base ciphers. There exist 2

24
 = 16777216 cipher combinations. The advantage of 

selecting base ciphers without any restriction is the large number of equally probably combinations for the 
cascade. 
 
The decryption function executes the ciphers in reverse order. 
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2.4 Encryption/Decryption in CBC mode with cascades consisting of an arbitrary combination of 
base ciphers 

 
In Cipher Block Chaining mode, blocks of data are encrypted/decrypted one after the other with each data 
block depending on the ciphertext of the previously encrypted block. It is thus possible to further add 
variability for the cipher during encryption/decryption. 
 
CBC mode requires the initialization of a data buffer which holds the ciphertext generated by the previous 
encryption of a data block with an Initialization Vector IV as there is no previously generated ciphertext 
available in the first place. Additionally, a block counter can be initialized, e.g. with the frame number of an 
encrypted video stream or a timestamp in an audio file, etc. This mechanism allows to randomize encryption 
operations so that the encryption of static data, but with different values for the block counter, result in 
(ideally) indistinguishable ciphertext. The CBC encryption/decryption functions utilize this block counter 
value internally to alter the selection of base ciphers prior to each and every block encryption. The default 
value is 0 when CBC mode is initialized using this function: 
 
void PMCMED_init_CBC_mode(void * pPMCMED_cc,word64 CBC_block_counter_start_value=0LL) 
{ 
 struct PMCMED_cipher_context * pPMCMED_cipher_ctx; 
 
 if (!pPMCMED_cc) return; 
 pPMCMED_cipher_ctx=(struct PMCMED_cipher_context *)pPMCMED_cc; 
 
 pPMCMED_cipher_ctx->CBC_block_counter=CBC_block_counter_start_value; 

 memcpy(pPMCMED_cipher_ctx->last_block_CBC,pPMCMED_cipher_ctx->IV_for_CBC,16); 
} 

 
 
Encryption in CBC mode of any number of consecutive data blocks of data is performed through this 
encryption function: 
void PMCMED_CBC_encrypt_cascade(void * pPMCMED_cc,uint8 * pPlaintext,uint8 * pCiphertext) 
{ 
 struct PMCMED_cipher_context * pPMCMED_cipher_ctx; 
 word64     w64buf; 
 int     i,j; 
 int     index_arr[NUM_OF_CIPHER_FUNCTION_DELEGATES]; 
 KISSDELEGATE   * kiss_func=NULL; 
 gbpmc_kiss_context   kiss_ctx; 
 word64     w64; 
 

 if (!pPMCMED_cc) return;  
 pPMCMED_cipher_ctx=(struct PMCMED_cipher_context *)pPMCMED_cc; 
 
 w64buf=pPMCMED_cipher_ctx->CBC_block_counter; 
 pPMCMED_cipher_ctx->CBC_block_counter++;  
 
 memcpy(pPMCMED_cipher_ctx->plaintext_scheduler,pPMCMED_cipher_ctx->initial_plaintext_scheduler,16); 
 pPMCMED_cipher_ctx->plaintext_scheduler[7]^=(uint8)(w64buf & 0xff); 
 pPMCMED_cipher_ctx->plaintext_scheduler[1]^=(uint8)((w64buf>>8) & 0xff); 
 pPMCMED_cipher_ctx->plaintext_scheduler[5]^=(uint8)((w64buf>>16) & 0xff); 
 pPMCMED_cipher_ctx->plaintext_scheduler[4]^=(uint8)((w64buf>>24) & 0xff); 
 pPMCMED_cipher_ctx->plaintext_scheduler[3]^=(uint8)((w64buf>>32) & 0xff); 
 pPMCMED_cipher_ctx->plaintext_scheduler[2]^=(uint8)((w64buf>>40) & 0xff); 
 pPMCMED_cipher_ctx->plaintext_scheduler[6]^=(uint8)((w64buf>>48) & 0xff); 
 pPMCMED_cipher_ctx->plaintext_scheduler[0]^=(uint8)((w64buf>>56) & 0xff); 
 
 // let's now generate 128 bit that are impossible to guess. We'll derive from that data the sequence 

 // of the ciphers 
 pPMCMED_cipher_ctx->encryption_func_of_scheduler( 
  pPMCMED_cipher_ctx->crypto_context_of_scheduler, 
  pPMCMED_cipher_ctx->plaintext_scheduler,pPMCMED_cipher_ctx->ciphertext_scheduler); 
 
 for (i=0;i<NUM_OF_CIPHER_FUNCTION_DELEGATES;i++) index_arr[i]= 
  (pPMCMED_cipher_ctx->ciphertext_scheduler[i]>>4) & (NUM_OF_CIPHER_FUNCTION_DELEGATES-1); 
 for (i=0;i<NUM_OF_CIPHER_FUNCTION_DELEGATES+(pPMCMED_cipher_ctx->ciphertext_scheduler[0] 
  & 0x000f);i++)  
 { 
  j=index_arr[0]; 
  index_arr[0]=index_arr[(i+pPMCMED_cipher_ctx->ciphertext_scheduler[i & 0x0f]) 
   & (NUM_OF_CIPHER_FUNCTION_DELEGATES-1)]; 
  index_arr[(i+pPMCMED_cipher_ctx->ciphertext_scheduler[i & 0x0f]) 



 8 

   & (NUM_OF_CIPHER_FUNCTION_DELEGATES-1)]=j; 
 } 
 
 j=pPMCMED_cipher_ctx->ciphertext_scheduler[0] & (NUM_OF_CRYPTO_CONTEXTS_PER_CIPHER_DELEGATE-1);  
 // perform CBC now 
 for (i=0;i<16;i++) pPlaintext[i]^=pPMCMED_cipher_ctx->last_block_CBC[i]; 
 
 // encrypt with unknown sequence of ciphers 
 for (i=0;i<NUM_OF_CIPHER_FUNCTION_DELEGATES;i++) 
 { 
  pPMCMED_cipher_ctx->encryption_func_delegates[index_arr[i]]( 
   (void *)&pPMCMED_cipher_ctx->pcc[((index_arr[i] 

   *NUM_OF_CRYPTO_CONTEXTS_PER_CIPHER_DELEGATE)+j) 
   *MAX_SIZE_OF_CRYPTO_CONTEXT_IN_BYTES],pPlaintext,pCiphertext); 
  i++; 
  pPMCMED_cipher_ctx->encryption_func_delegates[index_arr[i]]( 
   (void *)&pPMCMED_cipher_ctx->pcc[((index_arr[i] 
   *NUM_OF_CRYPTO_CONTEXTS_PER_CIPHER_DELEGATE)+j) 
   *MAX_SIZE_OF_CRYPTO_CONTEXT_IN_BYTES],pCiphertext,pPlaintext); 
  if (i==3) { 
   w64=((word64*)pPlaintext)[1]; 
   w64^=((word64*)pPMCMED_cipher_ctx->memory_bias)[w64 & 
    ((SIZE_OF_MEMORY_BIAS_ARRAY>>3)-1)]; 
   kiss_func=pPMCMED_cipher_ctx->gbpmc_kiss[(w64+index_arr[4]) & 
    (NUM_OF_KISSDELEGATES-1)]; 
   kiss_ctx=*(pPMCMED_cipher_ctx->initial_ctx_array[((w64>>30)+index_arr[2]) & 
    (NUM_OF_KISS_CONTEXTS-1)]); 
   (*((word64*)pPlaintext))^=kiss_func(&kiss_ctx); 

  } 
} 

 memcpy(pCiphertext,pPlaintext,16); 
 memcpy(pPMCMED_cipher_ctx->last_block_CBC,pCiphertext,16);  
 memset(pPlaintext,0xaa,16); // let's disguise our last intermediate result 
} 

 
 
The function first modifies a 128 bit pseudorandom number with the block counter and encrypts this number 
through one of the base ciphers that is used as a "scheduler". The resulting ciphertext is nothing but a 
stream of pseudorandom numbers that determine which of the eight base ciphers is executed at what time 
in the queue of eight cipher slots. Above of this, a set of cipher contexts is selected once per function call 
from the result of the "scheduler" encryption operation. This function allows for optimum attack security as 
almost any operation is influenced by a keyed operation. 
 
The decryption function 
 void PMCMED_CBC_decrypt_cascade(void * pPMCMED_cc,uint8 * pCiphertext,uint8 * 

pPlaintext) 

performs the same steps, but it executes the base ciphers in reverse order and performs the CBC operation 
(as a matter of logic) at the end. 
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3. Attack security and performance 

 
The security of cascades has been an open question until 2006/2009. The security of cascades of l ≥ 3 
block ciphers improves significantly over single or double encryption ( l = 1 or l = 2 ) [3].  
 
Gazi and Maurer write in [3]: "In a recent paper [4], Bellare and Rogaway have claimed a lower bound on the 
security of triple encryption in the ideal cipher model. Their bound implies that for a block cipher with key 
length k and block length n, triple encryption is indistinguishable from a random permutation as long as the 

distinguisher is allowed to make not more than roughly 

 

],min[2/1
2

knk +

 queries." 
 

In our case k equals n, which yields for the advantage 
k∗2/3

2  , which is significant! Cascading only three 
ideal 128 bit block ciphers with 128 bit key length can be as secure as a 192 bit block cipher. AES Rijndael, 
Twofish, etc. are certainly not ideal ciphers, but they are certainly still a good choice to realize a cipher 
cascade. 
 
Gazi and Maurer [3] continue with "This bound is significantly higher than the known upper bound on the 
security of single and double encryption, proving that triple encryption is the shortest cascade that provides 
a reasonable security improvement over single encryption. Since a longer cascade is at least as secure as a 
shorter one, their bound applies also to longer cascades. They formulate as an interesting open problem to 
determine whether the security improves with the length of the cascade also for lengths l > 3." 
 
Due to the fact that the Polymorphic Medley Cipher always makes 8 calls to several ciphers out of a set of 
128 bit encryption functions, the time that it takes to encrypt one block of 16 bytes (128 bit) is roughly 8 
times longer than the average time it takes to encrypt a single block with AES Rijndael, Anubis, Twofish, 
Serpent, etc.  
 
Attack security is tightly linked to speed - especially to the key setup time. This is typically the weak point of 
ciphers that are heavily promoted by government organizations whose mission is to spy on people. 
 
Key setup for AES only "costs" several hundred instructions. A single core on a modern microprocessor can 
perform 2.89 million key setups per second! 
 
The Polymorphic Medley Cipher Version 2 is although designed for a long and adjustable key setup time 
and with extreme hunger for random access memory without allowing cache memory to be of much use in 
order to force many-core general purpose microprocessors to fetch data from RAM that is external to the 
chip. 
 

Cipher Polymorphic 
Medley Cipher 
Version 2 

Polymorphic 
Medley Cipher 
Version 2 

AES (table-
based) 

AES (table-based) 

Type of machine code 32 bit C++ x86 
code  

64 bit C++ x64 
code  

32 bit C++ x86 
code  

64 bit C++ x64 
code  

Encryption speed on an Intel Core 
i7 950 clocked at 3.06GHz 
[Mbit/s] 

114 132 605 1003 

Minimum key setup rate on an 
Intel Core i7 950 clocked at 
3.06GHz [key setups/s] 

0.891 1.36 2,751,890 2,887,670 

Maximum key setup rate on an 
Intel Core i7 950 clocked at 
3.06GHz [key setups/s] 

6.4 15.2 2,751,890 2,887,670 

Encryption speed on an Intel Core 
2 Duo T5750 CPU, clocked at 
2.0GHz [Mbit/s] 

73 n/a 394 n/a 

Minimum key setup rate on an 
Intel Core 2 Duo T5750 CPU, 
clocked at 2.0GHz [key setups/s] 

0.597 n/a 1,954,270 n/a 

Maximum key setup rate on an 
Intel Core 2 Duo T5750 CPU, 
clocked at 2.0GHz [key setups/s] 

3.895 n/a 1,954,270 n/a 

Table 1: Encryption speed comparison: The Polymorphic Medley Cipher vs. AES, desktop PC and laptop 
computer, compiler: Microsoft Visual C++ 2010 
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Key setup on a single core of a modern microprocessor can take between 66 .. 2000 milliseconds, which 
allows for reasonably fast, as well as very secure operation. The longer the key setup time, the more 
computer power is required by an attacker to apply Brute Force or a Dictionary Attack or both.  
 
 
 

4. Comparison of AES vs. Polymorphic Medley Cipher vs. The Polymorphic Giant 
Block Encryption Algorithm 
 

Design goal Polymorphic Giant Block Size Cipher Polymorphic Medley Cipher AES Rijndael 

Large and 
variable 
block size 

Block size is only limited by the 
resources of the target 
computer(s). Target systems 
should run at 500MHz or higher 
and more than 10Mbyte free RAM 
should be available. The Strict 
Avalanche Criterion is thus met 
perfectly. 

Not supported at all, but the 
approx. 10 times larger machine 
code and required RAM of 
16MByte + 154kByte make the 
design much more complex 
than AES alone. 

Not supported at all. Ciphers like 
AES need little more than 1Kbyte of 
machine code and a microcontroller 
typically used in cheap smart cards 
and washing machines (approx. 
20.000 transistors) to run. It is 
conceivable that such conventional 
ciphers could have been hardened 
against all kinds of attacks if more 
complex implementations would 
have been the target. 

No padding 
to reach 
block 
granularity 
shall be 
necessary 

Block size is totally variable and 
blocks keep their length => no 
padding required, which results in 
no information being transmitted 
in vein. 

Like AES: 16 byte block 
granularity 

� Padding required 
 

DES: 8 byte block granularity, 
AES: 16 byte block granularity 

� Padding required 
A 2048 bit conventional block 
cipher would require padding to 256 
byte blocks resulting in dramatic 
increase in data traffic if used for 
the encryption of TCP or UDP data 
packets. 
 

Partitioning 
of extremely 
big blocks at 
arbitrary 
position 

Blocks that are too big to handle 
are truncated into sub-blocks with 
block sizes that are determined by 
the key as well as the length of 
the original block. 

Not supported at all. Block size 
is fixed to 16 bytes just like 
AES. 

Not supported at all. AES, DES and 
all other well-known block ciphers 
feature fixed block sizes. 

Resistance 
against all 
known 
attacks 

Due to its variable nature are 
Polymorphic Ciphers not 
susceptible to typical attacks that 
target specific characteristics 
and/or known weaknesses of 
fixed ciphers. Brute Force is 
although applicable to any cipher. 

Design is more resistant than 
AES to Dictionary Attacks due 
to a long and irreducible key 
setup time (more than 100 
million machine instructions). 
The cipher is bit more resistant 
against DPA (Differential Power 
Attack), but only because the 
complexity of the design. 

AES can be broken easily by DPA 
(Differential Power Attack) on small 
microprocessors and micro-
controllers [5]. 

Resistance 
to future 
attacks that 
may cut 
effective key 
size by ½ or 
even 2/3  

Cutting of effective key size by ¾ 
would result in still extremely 
high complexity of O(2

256
) or 

higher, which is regarded as 
totally safe for the next trillion 
years. 

Cutting of effective key size by 
¾ would result in still extremely 
high complexity of O(2

256
), but 

only if long keys (1024 bit) are 
actually used. 

Cutting of effective key size by ½ 
results in an extremely low 
complexity of 2

64
. The cipher would 

be regarded as being broken. [6] 

Extremely 
long key 
setup time 

> 100ms on a modern 
microprocessor make comparably 
short keys safe against Brute 
Force attacks conducted on a few 
machines. Extremely long key 
setup time increases energy 
consumption multiplied by the 
time needed for Brute Force by 
factor 2.000.000. 

66 .. 2000ms on a modern 
microprocessor make medium-
sized keys quite safe against 
Brute Force attacks if the 
attacks are conducted on a few 
machines.  

<1µs help attackers to try each and 
every password combination. This 
is highly dangerous if short 
passwords are being used to 
protect data. 

Platform 
independenc
e 

Runs on any 32 or 64 bit 
microprocessor or micro-
controller. 

Runs on any 32 or 64 bit 
microprocessor or micro-
controller. 

Runs on any 8-, 16-, 32- and 64 bit 
microprocessor and micro-
controller. 

Polymor-
phism and 
data depen-
dent 
selection of 
functions 

The cipher is not only completely 
variable, but also is the block size 
huge and unpredictable if 
truncation is performed. No static 
weakness is exhibited. 

The cipher is variable, and there 
are no static weaknesses. The 
Cipher-Block-Chaining 
encryption function is even data 
dependent. 

Classic ciphers are static and can 
thus be thoroughly reverse-
engineered and analyzed. 
Cryptanalysis of a mechanism that 
does always exactly the same is 
somewhat easier than for a 
mechanism that never executes the 
same operation twice. 
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Use of large 
amounts of 
resources 

1 Mbit internal state requires at 
least approx. 8 million transistor 
equivalents to run. This alone 
makes Brute Force Attack more 
difficult and much more 
expensive compared with 
conventional ciphers. 

16MByte + 154 Mbyte of internal 
state need to be provided by an 
attacker. Mounting a Brute 
Force Attack on a large number 
of code breaker cores is much 
more expensive compared with 
conventional ciphers. 

Less than 50.000 transistor functions 
are required to build an AES block. 
Approx. 1.000.000 AES blocks can 
run in parallel on an 8’’ wafer to try 
and break a code using Brute 
Force. 

Attacks 
need to be 
expensive 
for an 
attacker 

The proposed cipher requires a 
lot of resources and extremely 
much time for key setup, an 
attacker requires a “time x 
resources product” of approx. 
200.000 times compared with AES 
Rijndael when using keys with a 
similar length. 

The proposed cipher requires a 
lot of resources and extremely 
much time for key setup, an 
attacker requires a “time x 
resources product” of approx. 
200.000 times compared with 
AES Rijndael when using keys 
with a similar length. 

Trying different AES keys requires 
50.000 transistor equivalents and 
less than 1µs. This isn’t really all 
that much. This is a REAL 
weakness. 

High speed 1500 Mbit/s on an Intel Core i7 950 
(3.06GHz) (64 bit C++ code, 1024 
byte block length) 

132 Mbit/s on an Intel Core i7 
950 (3.06GHz) (64 bit C++ code) 

1000 Mbit/s on an Intel Core Core i7 
950 (3.06GHz) (64 bit C++ code) 

Proven 
security 

Three round Luby Rackoff 
features proven security. 
Polymorphic encryption is 
increasingly popular among 
experts but it’s probably 
impossible to prove security of 
the entire cipher. 

Due to a relatively large number 
of conceptually different base 
ciphers like Anubis or Serpent 
or AES, known weaknesses of 
these base ciphers play no role. 
Cascades actually improve 
attack security noticeably ([3] 
and [4]). This alone is sufficient 
to assume a higher attack 
security than for AES alone. 

Security is not proven. Extensive 
peer review indicates that the 
cipher could be broken in the 
future: 
For 128-bit Rijndael, the problem of 
recovering the secret key from one 
single plaintext can be written as a 
system of 8000 quadratic equations 
with 1600 binary unknowns. [8] 
Recently has a new related-key 
boomerang attack on the full AES-
192 and the full AES-256 been 
found by . Biryukov and 
Khovratovich [7]. A 256 bit key is 
reduced to a 119bit key when using 
AES-256. The attack is not 
applicable to 128 bit keys. 

Licensing Cipher is NOT open source and a 
license needs to be bought from 
PMC Ciphers, Inc. 

Cipher is open source and 
royalty-free. 

Cipher is open source and royalty-
free. 

Table 2: Comparison of key features of different ciphers 
 
 

5. Conclusion 

 
The proposed Polymorphic Medley Cipher is probably the first implementation of a cascaded cipher based 
on eight conceptually different and widely discussed base ciphers in order to increase attack security over 
single or double encryption. The base ciphers as well as the sequence of their execution is determined 
during key setup or even at runtime of the CBC encryption/decryption functions. The cipher is a Polymorphic 
Encryption Algorithm that gives an attacker no chance to know which base cipher has actually been used in 
an encryption operation and where in the queue. Attackers are deprived of constants and exhaustive sieve 
(Brute Force Attack) is impeded by a key setup procedure that consumes a lot of time and random access 
memory. Parallelization of exhaustive sieve is hampered through the sheer amount of space on a silicon 
wafer required to implement the cipher and, in case of an attacked with GPGPU chips, the amount of RAM 
required to allow the processor cores to run independent of each other. 
As the cipher is royalty-free, open source, based on well-analyzed base ciphers and hash functions and as 
it's easy to use, it certainly makes sense to implement it in commercial software. 
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