
 1

The Polymorphic Medley Cipher Version 2: 128 bit block
length,

128 .. 1024 bit key length

C. B. Roellgen, PMC Ciphers, Inc.

19.02.2013

Abstract

Ever since the invention of the Polymorphic Cipher, the highly variable concept has caused a noticeable
amount of fear in the publically financed security sector which reacted hastily and violently through
commentators who tried to shrug the concept off. The underlying idea of - at minimum - selecting a cipher
from a set of conceptually different ciphers in a keyed operation, is although as simple as it is effective and a
similar and undisputed concept has even been implemented in very popular encryption products since at
least 20 years.
So far the goal of PMC Ciphers was to create ultimate ciphers that could not be broken at all. For that
reason, block sizes need to be excessively big and preferentially variable. So far a Polymorphic Cipher that
is designed sufficiently close to keyed cipher selection and that utilizes widely used royalty-free cipher
primitives like Anubis or the commonly known AES Rijndael encryption functions was missing. Version 1 of
the Polymorphic Medley Cipher was insufficiently hardened against brute force attacks involving GPGPUs
like the “Many Integrated Core (MIC)” architecture from Intel.
In order to make a demonstration of a hardened cipher of ciphers available, the royalty-free 128 bit
Polymorphic Medley Cipher Version 2 is from now on available for cryptanalysis and for use by everybody
who wishes to implement the cipher in any product for civil use.

Key words: polymorphic, encryption, cipher, cascade, block, size, key, plaintext, ciphertext, cipher block

chaining, CBC, electronic codebook, ECB, initialization vector, AES, Rijndael, Twofish, Serpent, Cast-256,
RC6, SEED, Camellia, Anubis, hash, compression, SHA-256, Whirlpool, RIPEMD, Tiger, HAVAL-256,
combined secrecy system, pseudorandom number generator, PRNG, GPU, GPGPU, “Many Integrated Core
(MIC) architecture”, brute, force, attack.

1. Introduction

In 1999 I've invented a cipher that was compiled from the user-supplied key and I called the idea
"Polymorphic Cipher" as the different ciphers always came with the same interface, but with different code to
perform the task to encrypt data. If a polymorphic cipher cannot be compiled - which today is prevented by
many microprocessor platforms though DEP (Data Execution Prevention) in order to prevent viruses from
doing malicious things, it is still possible to use totally variable round functions or to simply select a cipher
from a set of base ciphers and to cascade a number of encryption operations. The latter concept is widely
known to be a real useful feature in data encryption software.
As an example, a popular open-source Disk Encryption Software named TrueCrypt allows users to select
the cipher from a set of three ciphers with a similar interface:
- AES Rijndael
- Serpent
- Twofish

It is further possible to select the following cascades:
- AES-Twofish
- AES-Twofish-Serpent
- Serpent-AES
- Serpent-Twofish-AES
- Twofish-Serpent

 2

The fact that the user selects the cipher or the cascade of ciphers makes the selection operation a so-called
"keyed operation". Due to high amount of entropy in ciphertexts produced by commonly used encryption
algorithms like Serpent, an attacker cannot distinguish ciphers by analyzing large amounts of ciphertext. An
attacker thus needs to try each cipher if he doesn't know the keyphrase.
Cascades of ciphers may consume a bit more CPU time, but an attacker can as well not distinguish between
a single cipher or a cascade of ciphers. C.E. Shannon [1] provides the background for this.

TrueCrypt although only allows to choose from eight different ciphers (ciphers and cascades) and only two
combinations of triple encryption are provided. According to [3] and [4], single and double encryption feature
almost the same attack security.

Wouldn't it make sense to always cascade - let's say - eight ciphers from a set of (e.g.) eight ciphers like
AES Rijndael, Serpent or Anubis?
Of course it this would make sense, simply because the math looks challenging for attackers and
cryptanalysts!
Having to try 8 encryption functions is certainly a difficult task (TrueCrypt), but the need to make a guess
between e.g. 40.320 for a cascade of 8 ciphers (every base cipher is guaranteed to be used once in the
cascade) or even 16 million encryption functions (arbitrary selection of base ciphers) is a task that is more
difficult by several orders of magnitude and even if half of the "cipher primitives" were considered as being
"weak" or "broken", the cascade would still provide for a good safety margin. It is evident that the sequence
in the cascade cannot be set in a dropdown menu any more. It makes much more sense to include this
operation in the key setup function. Actually the cascade provides for at least 15 additional password bits
(8!).

The key setup function is actually the decisive weakness of ciphers like AES Rijndael as this function
executes very fast (850 clock cycles for 128 bit keys on a Pentium Pro microprocessor [2]). Twofish needs
ten times longer - from the standpoint of an attacker a disaster.

What if key setup took hundreds of millions of clock cycles?
For a smart card chip application, a cipher with such characteristics would be useless, but a billion
instructions are crunched by CPUs of modern smartphones or desktop PCs within a second or less.
The average user would probably feel a slight delay until a data connection was established, but an attacker
would suddenly be deprived of the most common attack - the brute force attack using a dictionary.

It is logical that the performance of a 128 bit cipher of ciphers is limited by the comparably small and fixed
block size. Cascade block ciphers can although very well increase attack security over any of the
implemented base ciphers (AES Rijndael, Twofish, Serpent, Cast-256, RC6, SEED, Camellia and Anubis)
[3] and [4].
Attack security is finally what it's all about. This is especially true since GPU chips (Graphics Processing
Units) and more recently general-purpose graphics processing units (GPGPU) are readily available on the
market. One of the most recent new products is the “Intel® Xeon Phi™ Coprocessor 5110P” [9] with:

• 60 cores/1.053 GHz/240 threads
• Up to 1 teraflops double-precision performance
• 8 GB memory and 320 GB/s bandwidth
• Standard PCIe* x16 form factor
• Linux* operating system, IP addressable
• Supported by the latest Intel® software development products
• 512-bit wide vector engine
• 32 KB L1 I/D cache, 512 KB L2 cache (per core)
• 8 GB GDDR5 memory (up to 320 GB/s)
• 225W TDP
• X16 PCIe form factor (requires IA host)
• Host OS: Red Hat Enterprise Linux 6.x, SuSE Linux 12+

32KB Level 1 – and 512KB of Level 2 cache mean that cracking by brute force of AES or other tiny ciphers
is performed by such a chip on all 60 processor cores in parallel with 0% cache miss rate!

Even cascades of 8 tiny ciphers can be attacked by all 60 cores in parallel without the need to access the
8GB DDR5 RAM at all. The high flexibility of GPGPUs makes parallelized attacks on almost all known
ciphers possible and feasible.

So far only the Polymorphic Giant Block Size Cipher [10] renders highly parallelized hardware useless as

 3

the resources needed to mount parallelized attacks exceed the resources that can be integrated into a
single silicon die. In order to be able to mount a parallel brute force attack the Polymorphic Giant Block Size
Cipher [10] that is implemented in the product “File Encryption in One Block” from PMC Ciphers
(http://www.pmc-ciphers.com/eng/content/TurboCrypt/File-Encryption.html), more than 4 billion transistors
would be needed for the level 2 cache of each processor core as the S-Box of that cipher has such an
extreme size.
The proposed cipher accesses a large memory bias data array as frequently as possible in a way so that
even big level 1 or level 2 cache memories do not contain the desired data and thus force GPGPU chips to
fetch this data from memory that is external to the chip as well as to write it through sufficiently often in order
to force the processor cores to wait. The concept is less efficient than the one implemented in the
Polymorphic Giant Block Size Cipher [10], but Brute Force attack security is still by far better than for AES
(or likewise) alone.

2. The cipher

Recent work [3] proves that "for the wide class of block ciphers with smaller key space than message space,
a reasonable increase in the length of the cascade improves the encryption security".
By using base ciphers with identical key space and message space, encryption security is likely to be very
high. Use of a huge Internal State (16MB nominal) hardens the design against distributed attacks and
against differential attacks.

The cipher is a cascade block cipher with eight 128 bit base ciphers all operated in 128 bit key length mode.
The minimum key length is 128 bit in 8-bit words (16 bytes). Maximum key length is 1024 bit. Block size is
exactly 128 bit in 8-bit words (16 bit). All base ciphers feature an identical interface through the use of
wrapper functions. As an example, here's the wrapper function for the Anubis encryption function:

void CIPHER_PRIMITIVE_ENCRYPT_Anubis128(void * pCC,uint8 * p128bit_Plaintext,uint8 * p128bit_Ciphertext)
{
 struct crypto_primitives::NESSIEstruct_anubis * pAnubis_cc;

 pAnubis_cc=(crypto_primitives::NESSIEstruct_anubis *)pCC;
 crypto_primitives::NESSIEencrypt(pAnubis_cc,p128bit_Plaintext,p128bit_Ciphertext);

}

The interface of the Polymorphic Medley Cipher (Version 2) consists of a key setup function, a basic
encryption function, a corresponding decryption function and a function that frees the random access
memory that holds the Internal State of the cipher. An alternative ECB mode encryption function as well as
an encryption function for CBC mode is provided as well.

The key setup function
 int PMCMED_keysetup(uint8 * pKey,void * pPMCMED_cc,uint32 key_length_in_bits,uint32

 complexity)

initializes the crypto context (pointer pPMCMED_cc to the struct supplied as the second parameter with the
key (pointer pKey supplied as first parameter). The key length as well as a complexity parameter are as
well provided. key length is the number of key bits (must be a multiple of 8). The complexity parameter is
provided to allow key setup to be considerably fast, but also very slow. Values in the range of 0 .. 256 make
the function execute fast and values up to 65535 slow the function down. In the latter case, a multitude of
keyed operations involving all base ciphers and hash functions are called many times in order to compute
the Internal State of the Polymorphic Medley Cipher.

Three sets of encryption/decryption functions - two for data encryption in ECB (Electronic Code Book) mode
and one data encryption in CBC (Cipher Block Chaining) mode exist:

The encryption function
 void PMCMED_encrypt_cascade(void * pPMCMED_cc,uint8 * pPlaintext,uint8 * pCiphertext)
executes all base ciphers one after the other with different keys in an order that is set by the key setup
function. The sequence of eight ciphers is set by the key setup function. Each base cipher is guaranteed to
be used exactly one time in the cascade. The number of possible cipher combinations is exactly 40.320.
The decryption function
 void PMCMED_decrypt_cascade(void * pPMCMED_cc,uint8 * pCiphertext,uint8 * pPlaintext)
executes the cascade in reverse order.

 4

The encryption function
 void PMCMED_encrypt_max_var_cascade(void * pPMCMED_cc,uint8 * pPlaintext,uint8 *

pCiphertext)
executes eight base ciphers that operate with different keys one after the other in an order that is set by the
key setup function. It is very well possible (with a probability of exactly 1/16777216) that the very same base
cipher (e.g. AES Rijndael) is executed eight times in a row with different keys, but there is nothing wrong
about that. There exist exactly 2

24
 = 16777216 different and equally probable cipher combinations.

The decryption function
 void PMCMED_decrypt_max_var_cascade(void * pPMCMED_cc,uint8 * pCiphertext,uint8 *

pPlaintext)
executes the cascade in reverse order.

Developers can either use the functions PMCMED_encrypt_cascade() / PMCMED_decrypt_cascade() OR
PMCMED_encrypt_max_var_cascade() / PMCMED_decrypt_max_var_cascade(). The advantage of the first set
of encryption/decryption functions is that all base ciphers are executed one after the other. The
disadvantage is the limited number of combinations for the cascade. The second set of
encryption/decryption functions is likely to be advantageous due to optimum attack security as
approximately 24 bit of variability are present rather than only 14 bit.

The encryption function
 void PMCMED_CBC_encrypt_cascade(void * pPMCMED_cc,uint8 * pPlaintext,uint8 *
pCiphertext)

performs CBC encryption of any number of consecutive blocks of data. It executes eight base ciphers that
operate with different keys one after the other in an order that is set by the key setup function and that is
modified for each block through the use of a scheduler encryption function. There exist exactly 2

24
 =

16777216 different and equally probable cipher combinations for each encrypted block.
The decryption function
 void PMCMED_CBC_decrypt_cascade(void * pPMCMED_cc,uint8 * pCiphertext,uint8 *

pPlaintext)

executes the base ciphers in reverse order.
In order to be able to use the CBC encryption functions properly, CBC mode MUST be initialized once and
at any point of time when synchronization to a stream of data is required - e.g. once per video frame, by
calling the function
 void PMCMED_init_CBC_mode(void * pPMCMED_cc,word64 CBC_block_counter_start_value=0LL)

The unsigned 64 bit integer number CBC_block_counter_start_value can be initialized with any value that
identifies a certain section of a data stream in order to further increase attack security.

The function
 int PMCMED_free_memory(void * pPMCMED_cc)

must be called as soon as the cipher is not needed any more in an application software in order to
deallocate the Internal State of the cipher.

2.1 Key Setup

During the key setup phase is the key expanded for all eight base ciphers multiple times. In addition to this,
function pointers to the base ciphers and hash functions are initialized and permutated.

The following data is derived from the user-provided key:

- Sequence of function pointers to base hash functions
- Sequence of function pointers to base cipher functions
- 16 different Internal States for the base cipher functions
- Initialization Vector for Cipher Block Chaining (CBC) mode
- Selection of a base cipher that is used as scheduler and Initialization Vector for the scheduler
- Array of unsigned 64 bit integers with 16MB size that is used by all encryption/decryption functions

to translate the ciphertext after/before executing the 4
th
 base cipher in the cascade

 5

The 16 different Internal States for the eight base ciphers requires approximately 154 kBytes of RAM +
16Mbytes of memory bias, which forces an attacker to provide this costly hardware multiple times in order to
be able to mount a distributed attack.

The key setup function uses the compression functions SHA-256, Whirlpool, RIPEMD, Tiger and HAVAL-
256 to compute a pseudorandom sequence of these hash functions as well as a pseudorandom sequence
of all eight base ciphers, then to compute hash results, to further swap function pointers to the base ciphers,
to initialize the scheduler for CBC operations and finally to initialize a set of cipher contexts for the base
ciphers - 16 for each base cipher.

2.2 Encryption/Decryption in ECB mode with cascades consisting of the entire set of base ciphers

For the encryption and decryption in ECB (Electronic Code Book) mode, one set of cipher contexts is
selected at the end of the key setup function. The same function determines the sequence of ciphers that
are later executed in a cascade by the EBC mode encryption and decryption functions
PMCMED_encrypt_cascade() and PMCMED_decrypt_cascade(). Each base cipher is executed exactly once in
the cascade at any position in the queue. Eight base ciphers are thus executed one after the other. The
ciphertext of the first base cipher is the plaintext of the next base cipher in the queue and so on.

This is the source code of the encryption function:

void PMCMED_encrypt_cascade(void * pPMCMED_cc,uint8 * pPlaintext,uint8 * pCiphertext)
{
 int i,j;
 struct PMCMED_cipher_context * pPMCMED_cipher_ctx;
 KISSDELEGATE * kiss_func=NULL;
 gbpmc_kiss_context kiss_ctx;
 word64 w64;

 pPMCMED_cipher_ctx=(struct PMCMED_cipher_context *)pPMCMED_cc;

 j=pPMCMED_cipher_ctx->ciphertext_scheduler[0] & (NUM_OF_CRYPTO_CONTEXTS_PER_CIPHER_DELEGATE-1);
 for (i=0;i<NUM_OF_CIPHER_FUNCTION_DELEGATES;i++)
 {
 pPMCMED_cipher_ctx->encryption_func_delegates[i]((void *)&pPMCMED_cipher_ctx->

pcc[((i*NUM_OF_CRYPTO_CONTEXTS_PER_CIPHER_DELEGATE)+j)*
MAX_SIZE_OF_CRYPTO_CONTEXT_IN_BYTES],pPlaintext,pCiphertext);

 i++;
 pPMCMED_cipher_ctx->encryption_func_delegates[i]((void *)&pPMCMED_cipher_ctx->

pcc[((i*NUM_OF_CRYPTO_CONTEXTS_PER_CIPHER_DELEGATE)+j)*
MAX_SIZE_OF_CRYPTO_CONTEXT_IN_BYTES],pCiphertext,pPlaintext);

 if (i==3) {
 w64=((word64*)pPlaintext)[1];
 w64^=((word64*)pPMCMED_cipher_ctx->memory_bias)[w64 &
 ((SIZE_OF_MEMORY_BIAS_ARRAY>>3)-1)];
 kiss_func=pPMCMED_cipher_ctx->gbpmc_kiss[w64 & (NUM_OF_KISSDELEGATES-1)];

 kiss_ctx=*(pPMCMED_cipher_ctx->initial_ctx_array[(w64>>30) &
 (NUM_OF_KISS_CONTEXTS-1)]);

 (*((word64*)pPlaintext))^=kiss_func(&kiss_ctx);
 }
 }
 memcpy(pCiphertext,pPlaintext,16);
 memset(pPlaintext,0xaa,16);
}

The function looks up the set of cipher contexts to use and subsequently encrypts the plaintext repeatedly
with all available base ciphers. There exist n! cipher combinations (8 * 7 * 6 * 5 * 4 * 3 * 2 * 1 = 40.320). The
advantage of executing all available base ciphers in an arbitrary sequence is that the entire set of base
ciphers is definitely being used. There exist although only 40.320 possible combinations for cascades.

The decryption function executes the ciphers in reverse order.

 6

2.3 Encryption/Decryption in ECB mode with cascades consisting of an arbitrary combination of
base ciphers

For the encryption and decryption in ECB (Electronic Code Book) mode, one set of cipher contexts is
selected at the end of the key setup function. The same function determines the sequence of ciphers that
are later executed in a cascade by the EBC mode encryption and decryption functions
PMCMED_encrypt_cascade() and PMCMED_decrypt_cascade(). Any base cipher can be selected for any
position in the queue. Eight base ciphers are thus executed one after the other and the probability for a
single base cipher being selected for all positions in the queue is 1/16777216 = 0.0000000596046. The
ciphertext of the first base cipher is the plaintext of the next base cipher in the queue and so on.

This is the source code of the encryption function:

void PMCMED_encrypt_max_var_cascade(void * pPMCMED_cc,uint8 * pPlaintext,uint8 * pCiphertext)
{
 int i,j;
 struct PMCMED_cipher_context * pPMCMED_cipher_ctx;
 int index_arr[NUM_OF_CIPHER_FUNCTION_DELEGATES];
 KISSDELEGATE * kiss_func=NULL;
 gbpmc_kiss_context kiss_ctx;
 word64 w64;

 pPMCMED_cipher_ctx=(struct PMCMED_cipher_context *)pPMCMED_cc;

 for (i=0;i<NUM_OF_CIPHER_FUNCTION_DELEGATES;i++) index_arr[i]=(pPMCMED_cipher_ctx->
 ciphertext_scheduler[i]>>4) & (NUM_OF_CIPHER_FUNCTION_DELEGATES-1);

 j=pPMCMED_cipher_ctx->ciphertext_scheduler[pPMCMED_cipher_ctx->ciphertext_scheduler[0] & 0x0f] &
 (NUM_OF_CRYPTO_CONTEXTS_PER_CIPHER_DELEGATE-1);

 for (i=0;i<NUM_OF_CIPHER_FUNCTION_DELEGATES;i++)
 {
 pPMCMED_cipher_ctx->encryption_func_delegates[index_arr[i]]((void *)&pPMCMED_cipher_ctx->
 pcc[((index_arr[i]*NUM_OF_CRYPTO_CONTEXTS_PER_CIPHER_DELEGATE)+j)*
 MAX_SIZE_OF_CRYPTO_CONTEXT_IN_BYTES],pPlaintext,pCiphertext);
 i++;
 pPMCMED_cipher_ctx->encryption_func_delegates[index_arr[i]]((void *)&pPMCMED_cipher_ctx->
 pcc[((index_arr[i]*NUM_OF_CRYPTO_CONTEXTS_PER_CIPHER_DELEGATE)+j)*
 MAX_SIZE_OF_CRYPTO_CONTEXT_IN_BYTES],pCiphertext,pPlaintext);
 if (i==3) {
 w64=((word64*)pPlaintext)[1];
 w64^=((word64*)pPMCMED_cipher_ctx->memory_bias)[w64 &

 ((SIZE_OF_MEMORY_BIAS_ARRAY>>3)-1)];
 kiss_func=pPMCMED_cipher_ctx->gbpmc_kiss[w64 & (NUM_OF_KISSDELEGATES-1)];
 kiss_ctx=*(pPMCMED_cipher_ctx->initial_ctx_array[(w64>>30) &
 (NUM_OF_KISS_CONTEXTS-1)]);
 (*((word64*)pPlaintext))^=kiss_func(&kiss_ctx);
 }
 }
 memcpy(pCiphertext,pPlaintext,16);
 memset(pPlaintext,0xaa,16);
}

The function looks up the set of cipher contexts that are to be used, initializes an array that contains indexes
that point to certain base cipher functions and subsequently it encrypts the plaintext repeatedly with the
previously selected base ciphers. There exist 2

24
 = 16777216 cipher combinations. The advantage of

selecting base ciphers without any restriction is the large number of equally probably combinations for the
cascade.

The decryption function executes the ciphers in reverse order.

 7

2.4 Encryption/Decryption in CBC mode with cascades consisting of an arbitrary combination of
base ciphers

In Cipher Block Chaining mode, blocks of data are encrypted/decrypted one after the other with each data
block depending on the ciphertext of the previously encrypted block. It is thus possible to further add
variability for the cipher during encryption/decryption.

CBC mode requires the initialization of a data buffer which holds the ciphertext generated by the previous
encryption of a data block with an Initialization Vector IV as there is no previously generated ciphertext
available in the first place. Additionally, a block counter can be initialized, e.g. with the frame number of an
encrypted video stream or a timestamp in an audio file, etc. This mechanism allows to randomize encryption
operations so that the encryption of static data, but with different values for the block counter, result in
(ideally) indistinguishable ciphertext. The CBC encryption/decryption functions utilize this block counter
value internally to alter the selection of base ciphers prior to each and every block encryption. The default
value is 0 when CBC mode is initialized using this function:

void PMCMED_init_CBC_mode(void * pPMCMED_cc,word64 CBC_block_counter_start_value=0LL)
{
 struct PMCMED_cipher_context * pPMCMED_cipher_ctx;

 if (!pPMCMED_cc) return;
 pPMCMED_cipher_ctx=(struct PMCMED_cipher_context *)pPMCMED_cc;

 pPMCMED_cipher_ctx->CBC_block_counter=CBC_block_counter_start_value;

 memcpy(pPMCMED_cipher_ctx->last_block_CBC,pPMCMED_cipher_ctx->IV_for_CBC,16);
}

Encryption in CBC mode of any number of consecutive data blocks of data is performed through this
encryption function:
void PMCMED_CBC_encrypt_cascade(void * pPMCMED_cc,uint8 * pPlaintext,uint8 * pCiphertext)
{
 struct PMCMED_cipher_context * pPMCMED_cipher_ctx;
 word64 w64buf;
 int i,j;
 int index_arr[NUM_OF_CIPHER_FUNCTION_DELEGATES];
 KISSDELEGATE * kiss_func=NULL;
 gbpmc_kiss_context kiss_ctx;
 word64 w64;

 if (!pPMCMED_cc) return;
 pPMCMED_cipher_ctx=(struct PMCMED_cipher_context *)pPMCMED_cc;

 w64buf=pPMCMED_cipher_ctx->CBC_block_counter;
 pPMCMED_cipher_ctx->CBC_block_counter++;

 memcpy(pPMCMED_cipher_ctx->plaintext_scheduler,pPMCMED_cipher_ctx->initial_plaintext_scheduler,16);
 pPMCMED_cipher_ctx->plaintext_scheduler[7]^=(uint8)(w64buf & 0xff);
 pPMCMED_cipher_ctx->plaintext_scheduler[1]^=(uint8)((w64buf>>8) & 0xff);
 pPMCMED_cipher_ctx->plaintext_scheduler[5]^=(uint8)((w64buf>>16) & 0xff);
 pPMCMED_cipher_ctx->plaintext_scheduler[4]^=(uint8)((w64buf>>24) & 0xff);
 pPMCMED_cipher_ctx->plaintext_scheduler[3]^=(uint8)((w64buf>>32) & 0xff);
 pPMCMED_cipher_ctx->plaintext_scheduler[2]^=(uint8)((w64buf>>40) & 0xff);
 pPMCMED_cipher_ctx->plaintext_scheduler[6]^=(uint8)((w64buf>>48) & 0xff);
 pPMCMED_cipher_ctx->plaintext_scheduler[0]^=(uint8)((w64buf>>56) & 0xff);

 // let's now generate 128 bit that are impossible to guess. We'll derive from that data the sequence

 // of the ciphers
 pPMCMED_cipher_ctx->encryption_func_of_scheduler(
 pPMCMED_cipher_ctx->crypto_context_of_scheduler,
 pPMCMED_cipher_ctx->plaintext_scheduler,pPMCMED_cipher_ctx->ciphertext_scheduler);

 for (i=0;i<NUM_OF_CIPHER_FUNCTION_DELEGATES;i++) index_arr[i]=
 (pPMCMED_cipher_ctx->ciphertext_scheduler[i]>>4) & (NUM_OF_CIPHER_FUNCTION_DELEGATES-1);
 for (i=0;i<NUM_OF_CIPHER_FUNCTION_DELEGATES+(pPMCMED_cipher_ctx->ciphertext_scheduler[0]
 & 0x000f);i++)
 {
 j=index_arr[0];
 index_arr[0]=index_arr[(i+pPMCMED_cipher_ctx->ciphertext_scheduler[i & 0x0f])
 & (NUM_OF_CIPHER_FUNCTION_DELEGATES-1)];
 index_arr[(i+pPMCMED_cipher_ctx->ciphertext_scheduler[i & 0x0f])

 8

 & (NUM_OF_CIPHER_FUNCTION_DELEGATES-1)]=j;
 }

 j=pPMCMED_cipher_ctx->ciphertext_scheduler[0] & (NUM_OF_CRYPTO_CONTEXTS_PER_CIPHER_DELEGATE-1);
 // perform CBC now
 for (i=0;i<16;i++) pPlaintext[i]^=pPMCMED_cipher_ctx->last_block_CBC[i];

 // encrypt with unknown sequence of ciphers
 for (i=0;i<NUM_OF_CIPHER_FUNCTION_DELEGATES;i++)
 {
 pPMCMED_cipher_ctx->encryption_func_delegates[index_arr[i]](
 (void *)&pPMCMED_cipher_ctx->pcc[((index_arr[i]

 *NUM_OF_CRYPTO_CONTEXTS_PER_CIPHER_DELEGATE)+j)
 *MAX_SIZE_OF_CRYPTO_CONTEXT_IN_BYTES],pPlaintext,pCiphertext);
 i++;
 pPMCMED_cipher_ctx->encryption_func_delegates[index_arr[i]](
 (void *)&pPMCMED_cipher_ctx->pcc[((index_arr[i]
 *NUM_OF_CRYPTO_CONTEXTS_PER_CIPHER_DELEGATE)+j)
 *MAX_SIZE_OF_CRYPTO_CONTEXT_IN_BYTES],pCiphertext,pPlaintext);
 if (i==3) {
 w64=((word64*)pPlaintext)[1];
 w64^=((word64*)pPMCMED_cipher_ctx->memory_bias)[w64 &
 ((SIZE_OF_MEMORY_BIAS_ARRAY>>3)-1)];
 kiss_func=pPMCMED_cipher_ctx->gbpmc_kiss[(w64+index_arr[4]) &
 (NUM_OF_KISSDELEGATES-1)];
 kiss_ctx=*(pPMCMED_cipher_ctx->initial_ctx_array[((w64>>30)+index_arr[2]) &
 (NUM_OF_KISS_CONTEXTS-1)]);
 (*((word64*)pPlaintext))^=kiss_func(&kiss_ctx);

 }
}

 memcpy(pCiphertext,pPlaintext,16);
 memcpy(pPMCMED_cipher_ctx->last_block_CBC,pCiphertext,16);
 memset(pPlaintext,0xaa,16); // let's disguise our last intermediate result
}

The function first modifies a 128 bit pseudorandom number with the block counter and encrypts this number
through one of the base ciphers that is used as a "scheduler". The resulting ciphertext is nothing but a
stream of pseudorandom numbers that determine which of the eight base ciphers is executed at what time
in the queue of eight cipher slots. Above of this, a set of cipher contexts is selected once per function call
from the result of the "scheduler" encryption operation. This function allows for optimum attack security as
almost any operation is influenced by a keyed operation.

The decryption function
 void PMCMED_CBC_decrypt_cascade(void * pPMCMED_cc,uint8 * pCiphertext,uint8 *

pPlaintext)

performs the same steps, but it executes the base ciphers in reverse order and performs the CBC operation
(as a matter of logic) at the end.

 9

3. Attack security and performance

The security of cascades has been an open question until 2006/2009. The security of cascades of l ≥ 3
block ciphers improves significantly over single or double encryption (l = 1 or l = 2) [3].

Gazi and Maurer write in [3]: "In a recent paper [4], Bellare and Rogaway have claimed a lower bound on the
security of triple encryption in the ideal cipher model. Their bound implies that for a block cipher with key
length k and block length n, triple encryption is indistinguishable from a random permutation as long as the

distinguisher is allowed to make not more than roughly

],min[2/1
2

knk +

 queries."

In our case k equals n, which yields for the advantage
k∗2/3

2 , which is significant! Cascading only three
ideal 128 bit block ciphers with 128 bit key length can be as secure as a 192 bit block cipher. AES Rijndael,
Twofish, etc. are certainly not ideal ciphers, but they are certainly still a good choice to realize a cipher
cascade.

Gazi and Maurer [3] continue with "This bound is significantly higher than the known upper bound on the
security of single and double encryption, proving that triple encryption is the shortest cascade that provides
a reasonable security improvement over single encryption. Since a longer cascade is at least as secure as a
shorter one, their bound applies also to longer cascades. They formulate as an interesting open problem to
determine whether the security improves with the length of the cascade also for lengths l > 3."

Due to the fact that the Polymorphic Medley Cipher always makes 8 calls to several ciphers out of a set of
128 bit encryption functions, the time that it takes to encrypt one block of 16 bytes (128 bit) is roughly 8
times longer than the average time it takes to encrypt a single block with AES Rijndael, Anubis, Twofish,
Serpent, etc.

Attack security is tightly linked to speed - especially to the key setup time. This is typically the weak point of
ciphers that are heavily promoted by government organizations whose mission is to spy on people.

Key setup for AES only "costs" several hundred instructions. A single core on a modern microprocessor can
perform 2.89 million key setups per second!

The Polymorphic Medley Cipher Version 2 is although designed for a long and adjustable key setup time
and with extreme hunger for random access memory without allowing cache memory to be of much use in
order to force many-core general purpose microprocessors to fetch data from RAM that is external to the
chip.

Cipher Polymorphic
Medley Cipher
Version 2

Polymorphic
Medley Cipher
Version 2

AES (table-
based)

AES (table-based)

Type of machine code 32 bit C++ x86
code

64 bit C++ x64
code

32 bit C++ x86
code

64 bit C++ x64
code

Encryption speed on an Intel Core
i7 950 clocked at 3.06GHz
[Mbit/s]

114 132 605 1003

Minimum key setup rate on an
Intel Core i7 950 clocked at
3.06GHz [key setups/s]

0.891 1.36 2,751,890 2,887,670

Maximum key setup rate on an
Intel Core i7 950 clocked at
3.06GHz [key setups/s]

6.4 15.2 2,751,890 2,887,670

Encryption speed on an Intel Core
2 Duo T5750 CPU, clocked at
2.0GHz [Mbit/s]

73 n/a 394 n/a

Minimum key setup rate on an
Intel Core 2 Duo T5750 CPU,
clocked at 2.0GHz [key setups/s]

0.597 n/a 1,954,270 n/a

Maximum key setup rate on an
Intel Core 2 Duo T5750 CPU,
clocked at 2.0GHz [key setups/s]

3.895 n/a 1,954,270 n/a

Table 1: Encryption speed comparison: The Polymorphic Medley Cipher vs. AES, desktop PC and laptop
computer, compiler: Microsoft Visual C++ 2010

 10

Key setup on a single core of a modern microprocessor can take between 66 .. 2000 milliseconds, which
allows for reasonably fast, as well as very secure operation. The longer the key setup time, the more
computer power is required by an attacker to apply Brute Force or a Dictionary Attack or both.

4. Comparison of AES vs. Polymorphic Medley Cipher vs. The Polymorphic Giant
Block Encryption Algorithm

Design goal Polymorphic Giant Block Size Cipher Polymorphic Medley Cipher AES Rijndael

Large and
variable
block size

Block size is only limited by the
resources of the target
computer(s). Target systems
should run at 500MHz or higher
and more than 10Mbyte free RAM
should be available. The Strict
Avalanche Criterion is thus met
perfectly.

Not supported at all, but the
approx. 10 times larger machine
code and required RAM of
16MByte + 154kByte make the
design much more complex
than AES alone.

Not supported at all. Ciphers like
AES need little more than 1Kbyte of
machine code and a microcontroller
typically used in cheap smart cards
and washing machines (approx.
20.000 transistors) to run. It is
conceivable that such conventional
ciphers could have been hardened
against all kinds of attacks if more
complex implementations would
have been the target.

No padding
to reach
block
granularity
shall be
necessary

Block size is totally variable and
blocks keep their length => no
padding required, which results in
no information being transmitted
in vein.

Like AES: 16 byte block
granularity

� Padding required

DES: 8 byte block granularity,
AES: 16 byte block granularity

� Padding required
A 2048 bit conventional block
cipher would require padding to 256
byte blocks resulting in dramatic
increase in data traffic if used for
the encryption of TCP or UDP data
packets.

Partitioning
of extremely
big blocks at
arbitrary
position

Blocks that are too big to handle
are truncated into sub-blocks with
block sizes that are determined by
the key as well as the length of
the original block.

Not supported at all. Block size
is fixed to 16 bytes just like
AES.

Not supported at all. AES, DES and
all other well-known block ciphers
feature fixed block sizes.

Resistance
against all
known
attacks

Due to its variable nature are
Polymorphic Ciphers not
susceptible to typical attacks that
target specific characteristics
and/or known weaknesses of
fixed ciphers. Brute Force is
although applicable to any cipher.

Design is more resistant than
AES to Dictionary Attacks due
to a long and irreducible key
setup time (more than 100
million machine instructions).
The cipher is bit more resistant
against DPA (Differential Power
Attack), but only because the
complexity of the design.

AES can be broken easily by DPA
(Differential Power Attack) on small
microprocessors and micro-
controllers [5].

Resistance
to future
attacks that
may cut
effective key
size by ½ or
even 2/3

Cutting of effective key size by ¾
would result in still extremely
high complexity of O(2

256
) or

higher, which is regarded as
totally safe for the next trillion
years.

Cutting of effective key size by
¾ would result in still extremely
high complexity of O(2

256
), but

only if long keys (1024 bit) are
actually used.

Cutting of effective key size by ½
results in an extremely low
complexity of 2

64
. The cipher would

be regarded as being broken. [6]

Extremely
long key
setup time

> 100ms on a modern
microprocessor make comparably
short keys safe against Brute
Force attacks conducted on a few
machines. Extremely long key
setup time increases energy
consumption multiplied by the
time needed for Brute Force by
factor 2.000.000.

66 .. 2000ms on a modern
microprocessor make medium-
sized keys quite safe against
Brute Force attacks if the
attacks are conducted on a few
machines.

<1µs help attackers to try each and
every password combination. This
is highly dangerous if short
passwords are being used to
protect data.

Platform
independenc
e

Runs on any 32 or 64 bit
microprocessor or micro-
controller.

Runs on any 32 or 64 bit
microprocessor or micro-
controller.

Runs on any 8-, 16-, 32- and 64 bit
microprocessor and micro-
controller.

Polymor-
phism and
data depen-
dent
selection of
functions

The cipher is not only completely
variable, but also is the block size
huge and unpredictable if
truncation is performed. No static
weakness is exhibited.

The cipher is variable, and there
are no static weaknesses. The
Cipher-Block-Chaining
encryption function is even data
dependent.

Classic ciphers are static and can
thus be thoroughly reverse-
engineered and analyzed.
Cryptanalysis of a mechanism that
does always exactly the same is
somewhat easier than for a
mechanism that never executes the
same operation twice.

 11

Use of large
amounts of
resources

1 Mbit internal state requires at
least approx. 8 million transistor
equivalents to run. This alone
makes Brute Force Attack more
difficult and much more
expensive compared with
conventional ciphers.

16MByte + 154 Mbyte of internal
state need to be provided by an
attacker. Mounting a Brute
Force Attack on a large number
of code breaker cores is much
more expensive compared with
conventional ciphers.

Less than 50.000 transistor functions
are required to build an AES block.
Approx. 1.000.000 AES blocks can
run in parallel on an 8’’ wafer to try
and break a code using Brute
Force.

Attacks
need to be
expensive
for an
attacker

The proposed cipher requires a
lot of resources and extremely
much time for key setup, an
attacker requires a “time x
resources product” of approx.
200.000 times compared with AES
Rijndael when using keys with a
similar length.

The proposed cipher requires a
lot of resources and extremely
much time for key setup, an
attacker requires a “time x
resources product” of approx.
200.000 times compared with
AES Rijndael when using keys
with a similar length.

Trying different AES keys requires
50.000 transistor equivalents and
less than 1µs. This isn’t really all
that much. This is a REAL
weakness.

High speed 1500 Mbit/s on an Intel Core i7 950
(3.06GHz) (64 bit C++ code, 1024
byte block length)

132 Mbit/s on an Intel Core i7
950 (3.06GHz) (64 bit C++ code)

1000 Mbit/s on an Intel Core Core i7
950 (3.06GHz) (64 bit C++ code)

Proven
security

Three round Luby Rackoff
features proven security.
Polymorphic encryption is
increasingly popular among
experts but it’s probably
impossible to prove security of
the entire cipher.

Due to a relatively large number
of conceptually different base
ciphers like Anubis or Serpent
or AES, known weaknesses of
these base ciphers play no role.
Cascades actually improve
attack security noticeably ([3]
and [4]). This alone is sufficient
to assume a higher attack
security than for AES alone.

Security is not proven. Extensive
peer review indicates that the
cipher could be broken in the
future:
For 128-bit Rijndael, the problem of
recovering the secret key from one
single plaintext can be written as a
system of 8000 quadratic equations
with 1600 binary unknowns. [8]
Recently has a new related-key
boomerang attack on the full AES-
192 and the full AES-256 been
found by . Biryukov and
Khovratovich [7]. A 256 bit key is
reduced to a 119bit key when using
AES-256. The attack is not
applicable to 128 bit keys.

Licensing Cipher is NOT open source and a
license needs to be bought from
PMC Ciphers, Inc.

Cipher is open source and
royalty-free.

Cipher is open source and royalty-
free.

Table 2: Comparison of key features of different ciphers

5. Conclusion

The proposed Polymorphic Medley Cipher is probably the first implementation of a cascaded cipher based
on eight conceptually different and widely discussed base ciphers in order to increase attack security over
single or double encryption. The base ciphers as well as the sequence of their execution is determined
during key setup or even at runtime of the CBC encryption/decryption functions. The cipher is a Polymorphic
Encryption Algorithm that gives an attacker no chance to know which base cipher has actually been used in
an encryption operation and where in the queue. Attackers are deprived of constants and exhaustive sieve
(Brute Force Attack) is impeded by a key setup procedure that consumes a lot of time and random access
memory. Parallelization of exhaustive sieve is hampered through the sheer amount of space on a silicon
wafer required to implement the cipher and, in case of an attacked with GPGPU chips, the amount of RAM
required to allow the processor cores to run independent of each other.
As the cipher is royalty-free, open source, based on well-analyzed base ciphers and hash functions and as
it's easy to use, it certainly makes sense to implement it in commercial software.

 12

References:

[1] C.E. Shannon. Communication theory of secrecy systems. Bell System Technical Journal, 1949

[2] B. Schneier, J. Kelsey, D. Whiting, D. Wagner, C. Hall, N. Ferguson. Performance Comparison of the
AES Submissions. (1999)

[3] P. Gazi, U. Maurer. Cascade Encryption Revisited. ASIACRYPT 2009, LNCS 5912, pp. 37–51. (2009)

[4] M. Bellare, P. Rogaway. Code-Based Game-Playing Proofs and the Security of Triple Encryption.
Eurocrypt 2006. LNCS, vol. 4004, pp. 409–426. Springer, Heidelberg (2006), http://eprint.iacr.org/2004/331

[5] S. Chari, C. Jutla, J.R. Rao, P. Rohatgi. A cautionary Note Regarding Evaluation of AES Candidates on
Smart-Cards. http://citeseer.nj.nec.com/chari99cautionary.html, 1999

[6] Orr Dunkelman, Nathan Keller. A New Criterion for Nonlinearity of Block Ciphers.
http://vipe.technion.ac.il/~orrd/crypt/apnp.pdf, 2006

[7] A. Biryukov, D. Khovratovich, Related-key Cryptanalysis of the Full AES-192 and AES-256,
https://cryptolux.org/mediawiki/uploads/1/1a/Aes-192-256.pdf, 2009

[8] Nicolas T. Courtois, Josef Pieprzyk. Cryptanalysis of Block Ciphers with Overdefined Systems of
Equations http://eprint.iacr.org/2002/044.pdf, 2002

[9] Intel Corporation, Product Brief “The Intel® Xeon Phi™ Coprocessor 5110P”,
http://www.intel.com/content/dam/www/public/us/en/documents/solution-briefs/high-performance-xeon-phi-
coprocessor-brief-2.pdf, 2012

[10] C.B. Roellgen, “Approaching the Perfect Cipher by Trespassing the block size confinement – The
Polymorphic Giant Block Encryption Algorithm”, http://www.pmc-
ciphers.com/vpics/9a8f098c615a425eab6d17c804dd67ae/whitepapers/giant_block_size_polymorphic_ciphe
r.pdf, 2010

 13

For more information: http://www.pmc-ciphers.com

This is a preliminary document and may be changed substantially prior to final commercial release. This document is provided for
informational purposes only and PMC Ciphers & Global IP Telecommunications make no warranties, either express or implied, in this
document. Information in this document is subject to change without notice. The entire risk of the use or the results of the use of this
document remains with the user. The example companies, organizations, products, people and events depicted herein are fictitious. No
association with any real company, organization, product, person or event is intended or should be inferred. Complying with all
applicable copyright laws is the responsibility of the user. Without limiting the rights under copyright, no part of this document may be
reproduced, stored in or introduced into a retrieval system, or transmitted in any form or by any means (electronic, mechanical,
photocopying, recording, or otherwise), or for any purpose, without the express written permission of PMC Ciphers or Global IP
Telecommunications.
PMC Ciphers or Global IP Telecommunications may have patents, patent applications, trademarks, copyrights, or other intellectual
property rights covering subject matter in this document. Except as expressly provided in any written license agreement from PMC
Ciphers or Global IP Telecommunications, the furnishing of this document does not give you any license to these patents, trademarks,
copyrights, or other intellectual property.
© 2009-2013 PMC Ciphers, Inc. & © 2009-2013 Global IP Telecommunications, Ltd. . All rights reserved.
Microsoft, the Office logo, Outlook, Windows, Windows NT, Windows 2000, Windows XP, Windows Vista, Windows 7 and Windows 8
are either registered trademarks or trademarks of Microsoft Corporation in the U.S.A. and/or other countries.
Company and product names mentioned herein may be the trademarks of their respective owners.

